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We show that the random walk generated by a hierarchical Laplacian in Z a has 
standard diffusive behavior. Moreover, we show that this behavior is stable 
under a class of random perturbations that resemble an off-diagonal disordered 
lattice Laplacian. The density of states and its asymptotic behavior around zero 
energy are computed: singularities appear in one and two dimensions. 
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1. I N T R O D U C T I O N  

Hierarchical models have been used in the mathematical physics literature 
as an intermediate step in the process of understanding the behavior of 
systems under renormalization group transformation. In this paper we con- 
sider the problem of a random walk in a random environment generated 
by a conveniently defined hierarchical Laplacian H with random coef- 
ficients, i.e., if P,(x, y) is the transition probability, then 

OPt 
Ot ( ' '  y) = HPt(., y) 

The deterministic hierarchical Laplacian is defined so as to mimic 
the quadratic form used by Dyson (s) in his definition of hierarchical spin 
systems. The coefficients of the quadratic form are chosen so that the 
corresponding Green's function for zero energy has the same asymptotic 
behavior as the usual d-dimensional lattice Laplacian as in ref. 6. This 
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hierarchical Laplacian turns out to have pure point spectrum (actually, 
infinitely degenerate positive eigenvalues) accumulating at zero. A perhaps 
surprising feature of this (deterministic) operator is that, despite the nature 
of its spectrum, it generates a diffusion process with the same scaling 
properties as the usual Brownian motion: 

e,(Lx, Ly) = L-aP L 2t(x, y) 

In particular, for the mean p-displacement one obtains 

( ] x ( t ) l P ) ~ f p t  p/2 with 0<Cp<OO, 0 < p < 2  

The only pathology is that the mean square displacement is infinite, i.e., 
C2 = 0% due to the extremely nonlocal nature of the generator. 

The random version of the model we consider is especially simple, as 
only the eigenvalues of the generator are random variables, but not their 
eigenfunctions as in the more realistic models discussed by Sinai (73 and 
Bricmont and Kupiainen. (2) In all cases considered in this paper the system 
exhibits standard diffusive behavior. This is to be compared with the results 
of Sinai, (7) who showed subdiffusive behavior in one dimension, and of 
Bricmont and Kupiainen, (23 who obtained diffusion in d~>3 for weak 
disorder in the asymmetric model. Our case, however, corresponds to the 
symmetric situation, i.e., P, (x ,y )=Pt (y ,  x), where subdiffusive behavior 
has been observed only in long-range correlated environments (43 (see also 
ref. 2 for further references). 

Our random hierarchical Laplacian corresponds to a random 
Schr6dinger operator with off-diagonal disorder. We compute the density 
of states and study its asymptotic behavior as E-- .0  (band edge). For a 
class of models p(E) is shown to be singular as E ~ 0  in d =  1, 2. The 
associated random Schr6dinger equation, however, is trivial: there are only 
localized states. The density of states for a hierarchical model with diagonal 
disorder was discussed by Bovier.(1) 

This paper is organized as follows. In Section 2 we introduce the 
hierarchical Laplacian operator and discuss the properties of the deter- 
ministic random walk it generates. In Section 3 we consider the random 
diffusive process. In Section4 we discuss the associated random 
Schr6dinger equation and the density of states of the Hamiltonian. In the 
Appendix we compute the asymptotic behavior of the Green's function for 
d =  1, 2. 

2. T H E  H I E R A R C H I C A L  L A P L A C I A N  

We introduce a hierarchical Laplacian on the lattice 7/a by defining, 
for x e Z d, the "block" wave functions: 
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b~)=Sx (2.1a) 

b(1)= L a/2 ~ b~O) (2.1b) 
y ~ B L ( x )  

and 

y E B L ( X  ) 

= L -'~/~ ~ 6~ (2.1c) 
y s B Ln (x )  

where B(Lx, L') denotes the block of center in Lx and side L'  and we 
denote B(Lx, L) by BL(X). It is convenient to take L odd and L > 1. 

Next, we introduce the "block" operators P(~), n =  1, 2, 3 ..... and 
x ~  2 a, which project on functions in /2(Zd) with support in BL,(X ) and 
which are constant  in B(Ly, L ~-1) for all y~BL,-I(X). In physicist's 
notat ion:  

=- Iby )(by ~)l (2.2) 
y ~ BL(X)  

i.e., for ~ ~ 12(7/d), n = 1, 2,..., 

(,) ( ,-1 ( , - i )  (2.3) P x 4 , :  ~ (by ),0)L, 
y e B L ( x )  

Finally, for x e7/e, n =  1, 2,..., we define the "fluctuation" orthogonal  
projectors 

Q(2)- (~) (,)5 b(-) - P x  - [ b x  ( x I (2.4) 

It is important  to note that  b~ ") and 6(') for x r y, are mutually orthogonal  ~ y  

and dim Ran Q(fl) = L d -  1. Moreover, it is easy to verify that  

~ Q(~')= Id (2.5) 
x e Z  d n>~l  

i.e., { Q(x "), x c 2 a, n/> 1 } is a spectral parti t ion of unity [in the sense of the 
strong limit of operators ion /2 (2a ) ] .  

Now we can define a hierarchical Laplacian by 

H =  ~ ~ (') (') ax Q~ (2.6) 
X E ~  d n > ~ l  

where {e(~'), x s 2  a, n= 1, 2,...) is the set of eigenvalues of Ho and {Q(x "), 
x E Y ,  n = 1, 2,... } its spectral projections. 
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The first case we are going to consider is the so-called "homogeneous 
deterministic case" Ho, i.e., we take (") n ~ = ~ ,  with ~ fixed and 
x-independent. The constant ~ will be determined by the asymptotic 
behavior of the Green's function at E = 0. 

In order to justify the above-defined Laplacian, we show that it 
reduces to the usual hierarchical Laplacian of Dyson (s) for d =  1 and L = 2, 
in the sense that their quadratic forms agree: for ~o ~ 12(7/a) 

(~o, Ho~o ) = 

where 

xcTY n>~ l 

n~>l x e Z  

= ~ ~p2(x) -- L - d  Z q~(Y) 
x e ~  y e B L ( x )  

L. x ~ Z  " , y e B L ( x  ) 

x~2~ y ~ B  L )x) 

x ~ Z  n>~l x � 9  y e B L n  t(x) 

=~ Y~ ~o~(x)+ Y~ ~"(~-1)  Y, [q,~(x)] ~ 
x ~ Z  n~>l x E g  

y �9 BLn(x) 

2.1. The  Associa ted  Green 's  Funct ion  

By definition and using the spectral theorem, for z eC\a(Ho) and 
x, y E zd, 

(Ho--Z) l ( x , y ) = ( a x , ( H o - z ) 1 6 y )  

o(n) \ 

n>~l 09~Z d ~  - - Z  //  

= ,L, Y~ - - ~ ,  + R ( x , y )  (2.7) 
n > ~ N ( x , y )  o ~ n - - z  
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with 

[r ~o~(x,y)) 
~, ~ - - -  fly if N(0, x )=N(0 ,  y) 

R(x,y)= (x,y~.<~(o,~\ :r - z  
otherwise 

Here N(x, y) denotes the smallest hierarchy which contains both x and y, 
i.e., the smallest block of side L n and center in L%o, oge Z d, n = 1, 2 . . .  
therefore satisfying N(x, y) ~ 1 gx, y ~ Zu and N(0, 0) = 1, and cgn(x, y) ~ Z d 
is uniquely determined by the conditions x, yeBc . (o . (x , y ) )  and 
o~.(x, y) # 0. 

Notice that for fixed x s Z d, R(x, y ) =  0 for ] y - x l  sufficiently large, 
namely, for N(0, y ) > N ( 0 ,  x). It should also be noticed that ]x-yl--> oo 
implies Ix--ylh ~ 0% but not the opposite. 

It is therefore sufficient to compute the element (0, x) of the associated 
resolvent 

(Ho-z) '(O,x) 

= ~ (~n--Z)--i {I E ( (~O ' ]3 (n - -1 ) ' (~ (n - -1 ) (~x )  1 ~y  , ' \~y ' 

n >1 N(O,x) y ~ BL(O) 

= Y~ ( ~ - ~ )  I[(L-~/~)~(~-~)-(L-~/~)~n] 
n > N(O,x) 

- -  ( 0 ~  N - -  Z) 1 ( L -  u/2)2N + a0,~(a _ z ) - i  

= ( L  d - 1  ) ~ L-dn(of--Z)-l--L-dN(otN--z)-l+ao, x(Ot--Z)-i 
. > N(O, x) ( 2 . 8 )  

We define the hierarchical distance dh(x, y), also denoted by Ix-YJh,  by 

{LoN(X'Y) for x C y  
dh(X' Y) := if X = y 

For d >  2, the limit z - r  0 gives the following result: 

Hol(0,  x) = (L d -  1) ~ (aLd) -~ - -  ( o ~ L d ) - - N " }  - (~0, x0~ -1  
n > N(O,x) 

- (  L~-I\~--U---1 1) (~Ld) x +'~~ 

= ct-- t -d~176 (2.9) 

822/71/3-4-6 
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which, for ]x[ >> 1, is to be compared with the usual decay IX[ 2-d. Therefore 
must take the value L -2 in order that our hierarchical Laplacian has the 

same asymptotic behavior as the usual Laplacian at E = 0. Notice then that 
E = 0 is the only accumulation point of a(Ho) and all eigenvalues of Ho are 
contained in the interval (0, L-2). 

R e m a r k  1. In one and two dimensions, the Green's function must 
be renormalized, but we defer this to the Appendix. 

R e m a r k  2. In the case z =  - m 2 < 0 ,  the Green's function has the 
decay ]xlh -~d+2), for all d, as obtained in ref. 6 for a slightly different 
hierarchical Laplacian. This is to be compared with an exponential decay 
for the usual Laplacian. 

2.2. The  Associa ted  S e m i g r o u p  

As done before for the Green's function, an explicit formula for the 
semigroup can be readily obtained, and is given by 

e-~m(0, x) := (~o, e-a~~ 

Using that 

we get 

= ( L d - - 1 )  ~ L dne--~"--L--dNe--t~N+60,~e t~, t 6 ~ +  
n > N ( O , x )  

L -dN= (L d -  1) ~ L -d~ 
m > m  

e-tu~ x)  = (L a - 1 ) ~ L-d"(e- '~" -- e-t~'v) + 6o, xe '~ 
n > N(O,  x )  

Now, integrating by parts, we obtain the desired expression for the 
semigroup, 

e-m~ x ) =  ~ (e - t~n- -e - t~) (L-a(n  1 ) - L - a n  )+3o, xe '~ 
n > N(O,  x )  

= ~ L-dn(e -t~~ -- e -'~") + 6o.xe -t~ (2.10) 
n >~ N ( O , x )  

The important property of this semigroup is that it defines a random walk 
on 2~ d, since 

e - m ~  'qyET/d, V t ~  + 
x ~ 2~ d 
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To verify that, it is sufficient to consider the case y = 0, the argument being 
as before. Therefore, 

Z 
x E •  d 

e - ' m ( O , x ) = e - t ~ ~  ~ e m~ ~ e-m~ 
x E  BL(O ) x ~  •d 

y ~ - O  y C B r ( O )  

= e '~ + ~ L a(1-n)(e __t~n+l - -  e_t~. ) 
n > ~ l  

+ Z ( LdN-Ld(~  1)) Z L-d~(e -t~'+~-e '~~ 
N>~ 2 n >1 N ( O , x )  

Changing the order of summation in the last term of the rhs, i.e., using that 

L d -  1 
E LdN Z L-an(e-t~"+l--e-t~") 

ta N > ~ 2  n > ~ N  

= ~ L-d'(e-t~"+l--e-t~") ~ L dN 

n=2 N~2 

we finally get that 

Y" e-'H(O, X) = e '~ + L d y" L-d"(e-'~"+' -- e-'~") 
x e Z  d n>~ 1 

+ ~ (L dn -- Ld)L an(e-tctn+l - -  e-'~~ 
n >~2  

= l  

R e m a r k  3. It can be shown in the same way that 

f (Ho)(x ,  y) = 1 Vx e Z d 
y ~ g  d 

�9 n as long as hm. ~ ~ f (~  ) = 1. 

2.3. D i f f u s i v e  Behavior :  M e a n  D i s p l a c e m e n t  

An important quantity related to the asymptotic properties (t--* oo) of 
the random walk is given by the mean p-displacement, 

E ' p -- trio ~j~ + Ix he , t e  (2.10) 
X E Z  d 
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for which we can also obtain an explicit expression: 

Ix I~e '/%(0, x) 
X E Z  d 

= ~ LPe-m~ ~ LPNt~176 
x E BL(O)  x E Z d 

x ~ O  x ~ B L ( O )  

=LP(Ld-1)  ~ L-dn(e-~"+~--e-t~~ 
n > ~ l  

+ ~ (L aN(~ Ld(N(O,~) - 1)LPN(O,x) ~, L-a"(e -t~'+l _ e-t~") 
N(0,x) >i 2 n >I N ( O , x )  

=LP(Ld-1)  ~ L d'(e-t~"+~--e t~,) 

L d -  1 
LP Z (L(d+P)n--L-d"(e-t~"+x-e-t~") 

+ L d+p --  1 n>~2 

= (L d -  1) LP-d(e -t~'2 --e -~') 

L d + P  __ L p 
+ L d+p- 1 ~ (LP"--L-an)(e-t~"+~-e-t~'n) (2.11) 

n > ~ 2  

where in the third equality we have changed the order of integration. 
We are now in a position of presenting our first theorem. 

T h e o r e m  1. For Ho given by (2.6) with a(x")=~ ", x EZ a, and 
t6 ~+,  the following holds: 

l im*t  p / 2  ~ [xl~e-t ,o(O,x)=c,(p)<oo, 0 < p < 2  
t --~ c~ x ~ Zd  

where (lira*, c*(p)) denote (lim sup, ~(p)) or ((liminf, _c(p)), with g(p) 
and _c(p) strictly positive. 

Proof. We consider p = 1, the proof being identical for 0 < p < 2. 
From the expression (2.11) we see that it is enough to consider the sum 

Ln(e-t~"+X-e-t~") 
n ~ 2  

all other contributions vanishing for large t. Taking c~=L -2, t = L  2k, 
k = 1, 2 , . ,  we can readily bound the above sum from below by taking just 
the ( k -  1)th term, i.e., 

n>~2 ~ Ln(e--L2(k-"-~)--e L2(k-"~) ~> Lk Z1 (1 -- e -L2) 
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The upper bound is obtained by a simple application of the mean-value 
theorem: 

L n(e - '~+~-e - t~ )  
n~2 

= + [L~(e -L2(k-"-ll - e-L2(*-"))] 
2 n=k+l  

k 
E Ln ''[- ~ (L2(k-n)-- L2(k-n-1))Ln 

n~2 n~k+l 

~< ~ - ~ _ I + ( I - L  -2) L k-n L k 
n=k+l  

_ ( 1  +L-L-2"~_L_ 1 J LK 

where in the first inequality we have used that, for n > k, 

[e -L2~-"-~)- e-L2(k ")1 ~< [L 2(k-n- 1) _ L2(k-~)[ 

R e m a r k  4. Notice that Vt e ~ +, i.e., for any k/> 1, 

~, (e -L~'k-~-~)-e-L2(~-'lL2" 
n>~2 

is divergent, which in tern implies that the mean square displacement 
(i.e., p = 2) is divergent: for fixed k, 

n~>2 

E (e --L2(k n-l)__ e_L2(k ,,))L2n 
n>-k 

) E e - l (  L2(k n)--L2(k-n-1)) L2n 
n>k 

= e - l ( l - L  - ; )  ~ L 2k 
n>k 

where is the last inequality we have used that, for n > k, 

[e_L2~k-~ ~)_e_r2(k .1[ ~e_l[L2(k_,, 1)_L2(k_n)] 

R e m a r k  5. We did not prove that ~(p)=_c(p). 
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2.4. Scaling Properties 

It is easy to show that the Green's function and the semigroup obey 
the following scaling relations: 

H o l ( x , y ) = L  a 2Hol(Lx,  Ly ), x # y  (2.12a) 

e-tin(x, y) = L-de-L-2m~ ix, L - ly ) ,  x # y  (2.12b) 

i.e., the same scaling relations as for the Green's function of the usual 
Laplacian. 

3. THE DISORDERED CASE: THE LAPLACIAN WITH 
RANDOM COEFFICIENTS 

3.1. Introduction 

In this section we consider the hierarchical Laplacian H (2.6) with 
random coefficients c~(~ ") given by 

( , )_  n (,) (3.1) 0~x - -  ~ "Yx 

with a = L  2 and {7(~ "), x e Z  a, n=1,2 , . . .}  are independent identically 
distributed random variables taking values in R and with disorder distribu- 
tion h(7). The reader can easily convince herself or himself that the com- 
putation of the Green's function and of the semigroup for the disordered 
case can be carried out in the same way as done before, obtaining that 

and 

exp( - tH)(O, x) = ~ L-d" [ e x p ( -  ta(o " + 1)) _ exp( - ta(o'))] 
n >/N(0,  x) 

+ 5o, x exp( - t~(o 1)) 

e - t ~ ( y , x )  =1 Vye7/d, V t e ~  + 
x e 77d 

where H denotes the Laplacian with random coefficients, i.e., 

H ~ ~ " (') (') = a 7~ Q~ 
X e Z  d n > ~ l  

3.2. Mean 1-Displacement 

Our main result is related to the asymptotic behavior (t-~ oo) of the 
mean displacement. 
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We consider two special cases of  disorder  distr ibution h(7): 

(i) Bernoulli distribution. Here 

~{n~ = ~ , (n )  = ] 'a" with probabi l i ty  p,, (3.2) 
x ~'x ( ~ n + l  with probabi l i ty  1 - p n  

and we take Pn = L % r/> 0, n = 1, 2 ..... No te  that  pn - ,  0 as n ~ oo and in 
the limiting case p. = 0 Vn, with probabi l i ty  one, 

e-re(x, y) = L-2e-tH~ y) Vx, y ~ ~_a, Vt 

Note  also that  r = 0 cor responds  to the homogeneous  determinist ic case 
t reated previously. 

(ii) Uniform distribution. Here  

h(7(~")) = Z[~ , 1] V x e Z  d, n= 1, 2 .... (3.3) 

R e m a r k  6. It  is crucial that  the values of ,%(n) x e 7/d, n >~ 1 } are 
t , ~ x  , 

such that  Pt(0, x)~>0 for all x~2_ a, t>~O. This is verified provided 
a n§ ~<a{~n}~<a n, as can he easily checked f rom (2.10). This explains our  
choices in (3.2) and (3.3). 

O u r  main  result follows: 

Theorem 2. Fo r  H as given above,  

lim*t-P/2E { ~z 'xl~e-tI-I(O'x)} =c*(p)<~ 0 < p < 2  
t ~ o o  x d 

for the Bernoulli  and uniform distributions,  with c*(p)> O. 

R e m a r k  7. Ins tead of considering the Bernoulli  distr ibution (3.2), 
one can also consider the renormal ized  Bernoulli  dis tr ibution 

"f ~"/P"r with probabi l i ty  p~ = L r n  

7{.} (c~/L- with probabi l i ty  1 - p,, 

satisfying ~{7 (n}} = 1, obta ining the same results in bo th  cases. 

Proof. First of all we compute  the mean  displacement  for the 
disordered case, obta ining 

[x[~ e x p ( - t H ) ( 0 ,  x)  
x E 27d 

= L p- a(Ld-- 1 ) [exp(  -- t~(o 2)) -- exp( -- ta(ol))] 

Ld+P __ L p 
+ L d + p -  1 2 (LP"-L-d~)[exp(--ta(o"+l))--exp(-t~(o~))] 

n > ~ 2  
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Therefore,  we have the following results. 

(i) For  the Bernoulli  distribution 

= L p-  d(La -- 1 ) [-e- t~2L 2r 

+ e -  '=3(1 -- L -2~) - e-~=~L-r- (1 - L - r ) e  -'=2] 

L d + P  __ L p 
q- L a + p _ l  ~ ( L p n - L - d n ) [ L  r(n+X)e-t~'+t 

n>~2 

+ ( l _ L - , ( , + l ) ) e - t ~ " + 2 _ L - r ,  e t~"_ ( l _ L - r , ) e - , ~  ~ 

E 
n>~2 

We can rewrite the last term of the rhs as a sum of three terms, 

(L pn -- L-a~)(e-t='+2 _ e-t="+~) 

+E 
n>~2 

n>~2 

( L P ' - L  d ' )L  r(n+l)(e t="+l_e-t~'+2 ) 

(Lpn__L d.)L r.(e-t~.+~ e t~"), r > O  

The terms with L -dn make no contr ibut ion to the asymptot ic  limit, and 
the last two ones with L -rn also do not  contr ibute  to the asymptot ic  limit, 
since they are of lower order  than the first one: 

E Lpn( C t~"+2--e--t~n+l) 
n>~2 

This term can be rewritten as 

L -p ~ Lpm(e -`~"+l-e-'~' ~) 
n ~ 3  

and it is s traightforward to see that  it gives an upper  and a lower bound  
of order  L pk, i.e., t p/2, as in the deterministic case. 

We now proceed to the second part. 

h ,(n)) Since (ii) For  the uniform distribution, (rx =ZEL-2.~?. 

1 L 2n 
E{e-t=("'} = ~c[-2 e-tL-2"v d7 = - f -  (e tL-2,,+~, e tL 2,) > 0 
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we get 

- - t L - 4  - -  e-'Z-2)] L d + P  ~ - - - -  LP 1 (e 

= L P - a + Z ( L  d -  1 ) L - Z k [ L 2 ( e - t L - 6  -- e - t r - 4 )  -- (e  -~r-4 -- e ~r 2)] 

L d + P  __ L p t -  1 ~,  ( L ( 2 + p ) . _ L ( Z _ d ) . ) [ L 2 ( e _ t C  21o~21e_~L 21o+~1) 
q - " L  d+p -- 1 n>~2 

_ ( e - , r  -2("+', - e-- ,L-z")]  

As before, we can obtain a lower bound to the whole expression above by 
just considering the kth term of the sum, namely, 

L d + P  _ L p 
L 2k(L(2+P)g--L(2 d)k)[L2(e--L-4--e L 2 ) _ ( e - L - 2 _ e  x)] 

L d + p -  l 

which in the asymptotic limit for large k gives a contribution proportional 
to L pk, i.e., ( tP)  1/2. 

To obtain an upper bound to the above expression is, in the present 
case, equivalent to finding an upper bound to 

L _ 2 k  ~ L(2+,)~[L2(e r2~k ~-2) e_L~(* .-~1)_ (e_L21k-.-, e_L~(*-.))] 
n~>2 

To do that we proceed as before, rewriting the sum over n >~ 2 as two terms 
and bounding them separately by 

k 

E 
n~2 

L~2+p),~ 2 k ( L 2 + l ) +  ~ L~2+P~"-2k[L2IL2~k  ,, 2~_L2~k-,~ 1) I 
n>k 

_ _  IL2(k n-1)_L2(k n)l] 
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L 2 + p  
- L  2 + p -  1 (L2+ 1)LPk+ ~ L P " ( 1 - L 2 ) ( 1 - e - I )  

n > k  

[L 2+p(L 2+1) L : -1e-1  L" ] 
=L'k L -L-~W~ ~- L ~ ~ - l - - Z p  

[ L 2 + p ( L 2 + l )  L 2 - 1  e 11 
=L'~ L ~-+'---I L ' ~ L ' - ~  e 

4. SOME REMARKS ON THE SCHRODINGER EQUATION 

4.1. Mean Square Displacement 

Instead of considering the diffusion equation associated with the 
hierarchical Laplacian as we have until now, we will now focus on the 
mean square displacement of the wave function, which is given by 

Ix[~ le""(0, x)l 2 
x ~ zTd 

To estimate this quantity, notice that there is a trivial bound to le"~(0, x)l, 
obtained directly from the explicit representation of the semigroup (2.10), 

2L a - -  L dN(O,x) 
(L a -  1 ) 

Therefore, 

Ixl] [e"'(O, x)l = 
x ~  Z d 

4 L  2d 

~< ~ Ixl~ ( U -  1) 2 L-2'~N<~ 
x ~ ,~ d 

4 L  2d 4 L  2d 
_ _  L - 2 d . 4  _ ~ L ( d + 2 ) N ( I - - L - d ) L  - 2 d N  

= L ( L  d -  1 ) (L a _ 1 )2 (L a - 1 )2 
N ~ > 2  

4L 4L a 
=-LT-~_ l + L a _  l ~ L (2-d)N 

N>~ 2 

4L 4L 4 d +(U_I)(Ld_L~) (d>2) Vt = L d ~  

which is clearly finite, independent of the disorder. This means that, in a 
certain sense, the Schr6dinger equation for the hierarchical Laplacian is 
trivial, since with probability one there is no dispersion of the wave 
function. 
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4.2. Density of States 

As is well known, in order to compute the density of states we need 
the diagonal element of the integrated resolvent, given by 

after a rescaling of the energy 

. ~  ~ 7(o"~- z /~" 

Therefore, a simple computation gives the density of states 

p(E) = lim Im E{(H-z)-~(0,  0)} 
e ~ 0  

=(fd--1) X L-~d-2)nh(E/~") (4.1) 
n~>l 

where h(7) denotes the disorder distribution. Let us now consider the 
behavior of p(E) as E - , 0 ,  The only relevant information for that is the 
behavior of h(7) at 7~0. For simplicity we consider only the case 
h = Z[0.1~. Taking E m = L 2m we now compute 

p(L 2m)=(L a_l )  ~ L (d-- 2)n 

n = l  

and therefore we get for 

(i) d = l  

lim L-mp(L -z'') - - - L  
m ~ c ~  

i.e., limE~o x/E p(E) = L, 

(ii) For d = 2  

lim m-lp(L 2m) 
m ~ o v  

= l i r a  m-~(L a-  1 ) L - ( a - z ) m [ L ( a - 2 ) ( m - D + L ( a - 2 ) ( m - 2 ) +  . . .  + 1 ]  

i.e., 

= l i m  m l ( m  - 1 ) ( L  2 -  1 )  = L 2 - -  1 

lim (1OgL E) -1 p ( E ) =  L 2 -  1 
E ~ 0  

- L + I  

L - I _ I  

Z ~ Z/O~ n 
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i.e., 

(iii) For d = 3 

Lmp(L 2m)=Lm(L3-1) ~ L-"  
n = l  

L 3 -  1 
- L -  1 L m ( 1 - L  m) 

= - (L2  + L  + 1)+ ( L 2 + L +  1)L m 

p(L - 2 ~ ) ~  ( L 2 + L +  1) 

Remarks 8. Notice that the density of states of the deterministic 
problem is obtained from (4.1) by the replacement of h(E/e") by 6(E/~"). 
We therefore see that the introduction of disorder produces a smoothing 
out of the asymptotic behavior around E = 0 .  The remaining singular 
behavior in d =  1, 2 as E ~  0 is the same as for the deterministic Laplacian 
in Na, and it appears as long as the origin E =  0 belongs to the support 
of h. 

Remark 9. The usual random Schr6dinger operator with off- 
diagonal disorder in d =  1 has been shown to have a singularity in the 
density of states at the band center (3) which has no apparent connection to 
the singularities observed here. 

R e m a r k  10. It is interesting to compare the above results with the 
behavior of the density of states for the model with diagonal disorder, 
Ho + V, where { V(x), x e Z a} are independent identically distributed 
random variables with common distribution dtt(V) and with Ho as before. 
In the latter case if dtt(V) is absolutely continuous, dtl(V) = f ( V )  dV, with 
bounded derivative f(V),  then we can use a theorem by Wegner (8) to 
obtain that the density of states p(E) is also a bounded function. 

A P P E N D I X  

As with the usual Laplacian, in one and two dimensions it is necessary 
to renormalize the Green's function so as to avoid divergences in the 
thermodynamic limit. This is done by subtracting the diagonal part of the 
resolvent, i.e., 

H~I(0, x)= lim H~,~(0, x ) =  lim [H~,A~(0, x) -- Ho,~(0, 0)] 
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Recall that in a finite volume A = L M and in the limit z ~ 0 

M 
1 Ho, A(O, O)= (L a -  1) ~ L (2-a)" 

n = l  

and therefore, for x 4 = 0, 

M 

HR,1A(O,x)=(La_I) ~ L(2 d)~_L(2 dlu(O,x~ 
n = N(O,x) + l 

M 

- ( U -  1 ) y ,  L ~ - ~ "  

n = l  

N ( 0 , x )  

= ( L a _ l )  ~ L(2-d)n__L(2 d)N(O,x) 
/ 1  = 1 

We then obtain the following asymptotic behavior as Ix] ~ oe in the 
thermodynamic limit: 

(i) For d =  1 

H~I(O, x ) =  lim H~I(O, x) 
A ~ Z  

N(O,x) 

= ( L  - 1 )  Y~ 5 ~ - 5 N(~ 
n = l  

L - 1  
( L - -  L x(O'x)  + 1)  _ L N(O,x) 

1 - L  

=LN(~ - 1 ) - L  I~l~% ~ (L-- 1)lxlh 

(ii) For d =  2 

N(O,x) 

HZa(O, x l = ( L 2 - 1 )  ~ 1 - 1  
n = l  

=(L 2-1)  N(O,x)-  I ~ (L 2 - 1 ) l o g r l x l h  
m ~  
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